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Introduction

The purpose of this paper is to present an overview of several
n-body dynamics formulations in the spacecraft dynamics literature.
Even though the emphasis is different, the overview in this paper is
somewhat in the spirit of Likins (1970, 1974, 1975) and Meirovitch (1975),
and the background references for this paper are essentially the same
as for these earlier overviews. This paper differs from previous papers
in the spacacraft dynamics literature in that both ""momentum formula-
tions' and '"'velocity formulations' are discussed in a single language- -
the language of the transformation operator formalism (Jerkovsky, 1976).

The paper starts out with a description of multi-body tree config-
urations. A path matrix, 7, and a reference matrix, o, are defined in
the spirit of Roberson and Wittenburg (1966). The next step is the intro-
duction of the '"'primitive' or "free body'' equations of motion in terms
of a single equation. This equation is then linearly transformed via a
transformation operator, A, and the result is a new ''transformed"
equation of motion. This method of transforming ''old" differential
equations to '""'new'' differential equations is based on Kron's method of
subspaces (Hoffmann,1944), and is similar to the matrix method of
structural analysis (Przemieniecki, 1968). In the old differential equa-
tions the velocities are inertial velocities, whereas in the new differen-
tial equations the velocities are relative velocities. The transformation
to relative velocities is made so that relative velocity constraints can be
treated more readily; this transformation is made in the spirit of class-
ical mechanics (Corben and Stehle, 1960) where generalized coordinates
are introduced so that the constraints become trivial.

As an alternative to transforming to relative velocities, the
equations of motion can be kept in terms of inertial velocities, and
the relative velocity constraints can then be incorporated via Langrange
multipliers. This alternative approach is particularly attractive in
cases where it is not a simple matter to express the inertial velocities
of a multi-body system in terms of an independent set of relative veloc-
ities; such a case occurs when the multi-body configuration is not a
tree--i.e., when there are closed loops.




The cquations prescnted in this paper assume that the multi-body

conflguration consists of n rigid bodies. The same procedure can be
uscd if some or all the bodics are flexible--i.e¢., the structure of the
multi-body dynamics cquations is the same whether the bodies are
flexible or rigid. In fact, a large number of rigid bodics can be used
to model a flexible body, and the structure of the cquations does not
depend on whether nis large. If it is desired to treat all n bodies as
floxible, then there are three modifications which are required: (1) the
‘primitive'” or 'free body' equation of motion must include ¢quations
of motion for the deformation degrees of freedom (Bodley et al., 1972;
Jerkovsky, 1977a); (2) the "primitive' and "transformod’ velocitics
must include the time derivatives of the deformation coordinates
(Bodley et al., 1975); and (3) the transformation operator, A, must
express the inertial velocities in terms of relative velocities plus
deformation coordinates time derivatives.

The momentum formulation and velocity formulation equations
described herein are similar to the equations that might be obtained
using a Hamiltonian or Lagrangian mechanics approach, respcectively.
However, there are two fundamental differences: (1) In the present
approach the Hamiltonian (a function of generalized coordinates plus
gencralized momenta) or Lagrangian (a function of gencralized coordi-
nates plus the time derivatives of these generalized coordinates) are not
ormed, and the equations of motion arc not obtained by partial differ-
ntiation of the Hamiltonian or Lagrangian: (2) In the present approach

final cquations arce not expressed explicitly and solely in terms of
ceneralized coordinates and generalized momenta or the time deriva-
tives of the generalized coordinates; instead, the final cquations are
expressed in terms of some intermediate' or "auxiliary'' variables
which are algebraic functions of the generalized coordinates and
gencralized momenta or the time derivatives of the generalized coordi-
nates. The intermediate or auxiliary variables generally have physical
signiticance. In the case of the momentum formulation, the intermedi-
ate variables are the velocities of hinge points and the translational
momenta, cven if there are no relative translational degrees of freedom.
The justification for the retention of intermediate variables is the con-
ceptual and computational simplicity of the resulting equations. Note
that a Hamiltonian forrulation would not even include any time
derivatives of genceralized coordinates (the generalized momenta would
be used instead). Hence, a momentum formulation which retains
velocities is really a "mixed" formulation rather than a '"pure' formu-
lation. But, similarly, a velocity formulation which retains velocities
other than the time derivatives of the gencralized coordinates is also
a mixed formulation. Note that if a pure formulation is used then the
terms in the cquations of motion are unique (if properly symmetrized);
on the other hand, in a mixed formulation the terms depend on the
particular choice of intermediate variables.




Description Of Multi-Body Tree Configurations

Given an n-body configuration, we label the bodies from 1 to n,
assigning the label 1 to the '""main'' or '"central' body. We obtain a
"graph'' of the configuration by putting each body in correspondence with
a vertex (or node) of a graph and connecting any two vertices of this graph
with a branch if the corresponding bodies have any degrees of relative
motion between them. If the resulting graph is a tree (i.e., if there are
no closed loops), then the n-body system is said to have a tree configura-
tion. If the graph is not a tree, then a tree can still be associated with
the graph by cutting as many branches as there are closed loops. Any
branch in any closed loop may be cut, and different choices will lead to
different trees of the graph.

Thus, to any n-body configuration there corresponds a tree with
Body 1 at the center of the tree. For the moment we do not concern 1
ourselves with how many degrees of freedom there are between adjacent
vertices (i.e., between adjacent bodies), or if the actual n-body configu-
ration has closed loops or not.

We label the bodies (or vertices of the tree) such that all the bodies
betxeen Body 1 and Body j have an index i between 1 and j. Also, we
let j be the set of integers which includes 1 and j and also includes the
labels of all bodies between Body 1 and Body j. Let ) be the label of the
body next to Body j on the path from Body j to Body I; similarly, leti
be thelabelof the body next to Body j; etc. Thcn the set ff consistof
the labels ' = { j, _), o oo L) Ev1dently, _] is the set cf indices of all
bodies which are '"'inward'' from Body J» including Body j. An example
9-body tree configuration is shown in Fig. 1. Fig. 2 shows the sets']
to 9 for this example. The labels 1to 9 are also shown, where 1 has beenr
set to zero so that J is defined for j=1 to n.

Next, we let k be the set of all_] such that k is contained in ]
(i. e., such that k €J) Evidently, k is the set of indices of all bodies
which are '"'outward" from Body k, including Body k. Fig. 2 shows the
sets 1 to 9 for the 9- body example. Note that the set 1 includes the integers
from1lton (1= {1, 2, ..., n}) because all bodies are outward from
Body 1.

We now introduce the ''path matrix" 7 as follows. Letting T;;
denote the element of min the it row and jt® column, we define

1, if Bodyj is between Body | and Body i

L 3
ij 0, otherwise (1)

Fig. 2 shows " for the 9-body example Note that the rows of Tare
(ht( rmined by the "inward' sets 1 for i =1to 9, and the columns of
'are determined by the "outward' sets j .
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If we think of Body j as the body to which Body j is'referenced",

then we can define the '""reference matrix' ¢ as follows
1, ifi =)
c.. = {-1, if Body i is referenced to Body j (2)

1 : ,
J 0, otherwise

Fig. 2 shows : for the 9-body example. Evidently, the -1 terms of

- can be filled in by looking at the labels 2, 3, ..., n. Note that the
labels 2, 3, ..., n define the tree configuration complc/t\ely, because
these labels allow us to draw the tree and then the sets ) and k for

T RS2 Also note that column j of nshows which bodies are
referenced to Body j.

From Fig. 2 we note that mand pare lower triangular, and o
is sparser than 1 However, Tand o contain the same information; in
fact, nand Pare inverses of each other:

(0 pi— 1n: TP (3)

where | is the n Xn identity matrix. We will see later that after the
matrices o or P are introduced for a particular tree configuration,
the equations become independent of the particular configuration under
consideration.

We now define the set i j to be the intersection of the sets iandj:

ij=inj=ji (4)

Now all the sets k, for k =1 ton, are ''nested' in the sense that if the

sets iaand j have any elements in common, then either 1 is contained in
j, or j is contained in i. Hence, iJis either i orj or the empty set .
Symbolically,

(5)

Note that 5 3=,

We now introduce the points cj, hj, and b; as follows, for i=1ton.
Let cj be the center of mass of Body i. If Body i is a rigid body, then
the point cj is a fixed material point of Body i; if Body i is deformable,
then A ""floats'' in the body. Whether Body i is rigid or deformable,

10




i
)

let h. be a fixed material point which is the "hinge' point for Body i.

Let I]

the péinl bi is the "base' point for Body i.

inertial reference origin (i.e., a point fixed in ""Body 0').
the points c¢j, hj, and bj for the 9-body example.

By "primitive"

Primitive Equations of Motion

be a fixed material point in Body i to which Body i is referenced;
By convention bj is the
Fig. 1 shows

equations and variables we will mean equations

and variables which refer to each body as a separate and distinct body,
without regard to how it fits into the multi-body configuration.

force on Body 1.

= : : =
Let P be the lincar momentum of Body i, and let ! be the

Let HEg be the angular momentum of Body i about
¢i,» ana let Lg; be the torque on Body i about cj.
the body index 1 as a superscript, and the point ¢; as a subscript. Let
1s the position

V"i be the linear velocity of the point ¢y; thus, if

-
Xes

vector to ¢, from the inertial reference origin, then Vi,
the dot over a vector is used to denote the time derivative in the inertial
Let ¢1 be the angular velocity of a frame fixed in

reference frame.
Body i.

Note that we are using

i,
Tej where

For simplicity, we now assume that all bodies are rigid; we

have already mientioned the modifications required when some or all

bodies are deformable.

Jby = (100

Let M! be the mass of Body i, and lct‘f{-i be
the inertia (dyadic) of Body i about cj; let Wl = (MY -l and

Now define G,

Gibbsian vectors as follows (Jerkovsky, 1976)

G

where
on Body i:
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is the '"'Euler coupling force
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define p and v as diagona
‘tric dyadics as follows

! matrices




=~ -] - |

.n 291 =)

- ’ 1 - (7)

mn Wn

b~ - e -

S i R St : : :
where M! = M! |, W! = W'] and | is the identity dyadic. The off-
diagonal clements of wand v are the zero dyadic O . The primitive
momentum formulation cquations for the n-body system are now
‘.;i\'\'ll l))

[ | R R Y R S 5 S = S (8)

N

where X is o columin matrix of zero vectors which is included here
only for pedagogical reasons. G, K, and - will be called the primitive
system momentum, rorce, and velocity, respectively. b and v will
be called the primitive system mass and inverse mass, respectively.
The velocity formulation cquation is

n-o ¥y =K (9)

The kinetic energy of the system of n rigid bodies is given by

e e
T=5G

G e 2 LT )
pr “=5G + v G (10)

ol —

;& t
where G anc% arc the 111';1115;)03(35 of G and ° ; thus,
‘ - - >y - SO R 2 5 =

(s _Hl Rk He., P! P2 ... P and similarly for ¢!. The
time derivative of the kinetic vnergy is given by

o e t 3

T =K - (1)
In the next section we express the primitive system velocity “in terms
of a new (or trancformed) system velocity . This then automatically
defines new system variables so that Eqs. (8) to (11) maintain their form.

Transformed Equations of Motion

We will ultimately be interested in the case where there are less
than 6 free degrees of freedom between some or all of the adjacent
bodies of the tree configuration. Therefore, we will now transform to
relative velocities which can then be prescribed if the corresponding
degrees of freedom are constrained.

12
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Velocity Transformation

We will now express,the inertial velocities @i and v(. in terms
of the relative velocities §¥ and U'. We define Qi as the ang_ular
velocity of Body i with respect to Body i to which it is referenced:

Qf - @i _ gl (12)

>

"Bodyo' is the inertial reference frame, and hence IO: 0. Therefore,
@l =@

Let fiab = ’:a - .b be the position vector to point a from point b.
Also, for k =1 to n, let dengte the time derivatiye of the vector
V with re spect to Body k; then, {# =y . Now define Ul as the time
derivative with respect to Body i of the position vector to the hinge point
hj in Body i from the base point bj in Body i :

.b; (13)

=i since T =0

h, b
Ty SRR 5
The primitive inertial velocities " and v.. can be expressed
in terms of the transformed relative velocities as follows (Jerkovsky,

1977b)

Note that 1;1 = R

n o
= Z T, &0] = Z‘ &4']

3 j€i (14)
o Aot 3 . =N i
. = i . SZJ ) = R J
Vey E_: ij ( Rc.h. il ke Z (Rc h gl
j=1 i) jei i
where we make use of the notation that for any two vectors o?’ and ©
the dyadic of @ is dencted by & and is defined by & - D’= ¥xp, and
at is the dyadic transp05c of @, and is defined by @+ B= ot ; note
that ¥t = - 4, i.e., & is skew- symmetric. The inverse of Egs.(14) are
= n g . :
§ = Z AL ) = ?El - —(Il
=1 Y
3l 2t Y - B . T . h TR
L . ; i) (Rc.h. .z vc.) Feg =t Ve. Rc.h. i Ve,
j=1 Jod j i i 14 1

Note that Eq. (15) is the same as Eq. (12).

We now define 7 to be a column matrix of vectors (and, therefore,
tis a row matrix of vectors) as follows:

st=[ Q@2 ... a» G U2 ... g1 e)

Eqgs. (14) and (15) can now be written in the form

13




T ——

TT A0 =B+ ¢, where B=A-1 (17)

A is the transformation operator which expresses the primitive system
velocity =~ in terms of the transformed system velocity 7, and B is

its inverse. A and B are matrices of dyadics; their elements can be
obtained by inspection of Eqs. (14) and (15). Note that A - B =B - A

is an identity with 2n | 's on the diagonal. See Jerkovsky (1976, 1977b)
for examples of A and B matrices.

Induced Transformations

In order for Eqs. (10) and (11) to maintain their form, we define
the transformed momentum, force, and mass as follows:
Ge=#'~g, R=a‘ 'k, F=a‘ & (18)

Carrying out the operation At~ G, we find G as follows:

GRERS S I i R o (19)
h h
1 2 n
where
-3 - 3 = i 1 =i
e Z_: ”ij LN .E.- R e F e
J 1=l 1 1) 1€) 1 1) (20)
= n : .
Bl = L e T
i=1 o i€j

*

Evidently, pJ is the linear momentum of the set of bodies whose labels
are in the set j ; i.e., the set of bodies outward from Body j, i%cluding
Body j. If we refer to this set of bodjes as ''System j ', then PJ is the
momentum of System j. Similarly, H{; is the angular momentum of

of System j about the hinge point hj in Body j. Carrying out the operation
A! . K yields the same type of equations, with L's and F's replacing H's

and P's, respectively.

The definitions of G and v given in Eq. (18) now yield G =% - &
in the form
B 7

7| [+ Sh PR
g &
By byhy bh i S
2oy 5 z ' : |
—+n «—>nl <nn -— - an
H i i S -8 Q J
]_-ln A B e C_f}Ihn C_f}ﬁhn ; (21) |
- - - - -— =
Pl St ok Stc = 11 . Mln U 1 |
‘1M nl'n |
2 |
"_ - o—o_- «»nNn =%
pn “tc--h t " Mnl Mrm Un
4 } L cia™ S En i A

14




whore

: n
= j i ey K g Tk K t
|12 b (il M™ R I ) = (I>+ M R R* )
hth 52y ki k) C ]\h‘ \khj K€Y ‘K (kh1 kkhj
e oy n l'\
S = M3 R = 3 m.. MR _, 2 MR (22)
c.:h ca=h = ki Kkj ¢, h - h.

1) 1 1) i k=1 ki k €1} ki
. 2 s :"»0 o l -— o e
M- Bonon M 1= F oM

}\'-—l o \_l l\(l'

Recall that the set 1 j is the intersection of the sets i and j. Ifij = ¢,
then the sum over k€ij yields the zero dyadic O, 1ii - j, then
‘f!l:"_h,""r'!hi , which is the incertia (dyadic) of System j about hj; also,
M1l = MJ, which is the mass of System j. Note that Reih; is the
position vector to the point ¢j;, the center of mass of System ij, from
the point h;. For an example of 7, sce Jerkovsky (1976, 1977b).

Eqgs. (18) have the inverse relationships
1 — . 1 ws - 1
G:B -G, K=B ‘'K, v=B:v-.B (23)

: : t = : s -
Carrying out the operation B+ G yiclds the inverse of Egs. (20)

i~

. I . z z :
o TR y =1 " L = [N =2 54
= o (Hh. BORy oo B e B l: i P (24)
}oi=] i ey i=]

SHLE 3 s t - : ; =¥ :
Similar results are obtained from B - K, with L's and F's replacing

H's and P's, respectively. The relationship ~ = v+ G takes the form
Fa2n) i e Sx s ] .1
HIR AR U o O, !’}11 1
Lat
: | 1
G -nl . cyn oul o | I;r’l i
| =1 it ! = T o el )
| U s S e ULl et B LS
i g H . . . (R |
: . : t i y 3
n weln' rnn Setolll onn N
vl Lz shail 7 W e W L P
where
cik _ & o | sl B R
e ij ‘kiJJ(j BT B Dy P i Ko
; (26) :
ik L - o e
w=§% g I o 79 . \ W)
j=l 1) (e i C G ]k
15




Since the reference matrix ¢ is generally sparser than the path
matrix 7, there arc less terms involved in generating the elements of
Vthan in generating the elements of 4.

Transformed Equations of Motion

The transformed momenturn formulation e¢quation of motion is

E} +X =K where ; = At + X - Al S (27)

and the transformed velocity formulation equation of motion is

i+ ¥=K sdiore. ¥ = A° - (Xt e A A) (28)

Performing the indicated operations for X and Y yields

Mo Ly e R B g e
h h
<t Li e - (29)
Y = E : e et
“h h
1 n
where
L= 3 B R .6y (30)
Lyt e (o c.h.
J 1€) 1 13
= 2o 1 ’.‘t mile
Cl = 1\4l a 1\/11 , RC oy 9} (31)
‘i kéxi 1k
. e Bl g b
Pl Cey 8 0 (32)
1€ k=1 "kj k

From Eq. (14); for GCi we, note thgt.?:(.. is the part of the acceleration
V.. which is not linecar in 0QJ and TJ. ije that Ci is a "Coriolis-type'",
"cbntrifugal-type' torce on Body i, and CJ is this force on System j.

l‘;{]i is @ coribined ""Euler coupling' torque plus moment of Coriolis-
type and centrifugal-type force. Of course, X and Y are only

“fictitious forces''; the true force is K.

Jerkovsky (1977b) showed that there exists a D such that

=1

X=-D+<5, Y=L »5 (33)
These relationships show that X and Y are closely related. However,
D involves very complicated terms: some of these terms drop out from
D , and others drop out from Dl - 7. Thus, it is not conceptually

or computationally cfficient to determine D as a prelude to determining
X or Y: i.e., Dis not a good "intermediate'' or "auxiliary' variable.

It is most straightforward to dgtermine X from Eq. (29)] and Y from
Eqs. (29)2 to (32); i.e¢., v, , C', etc., are good intermediate variables.

h.
i
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The 2n equations in Eq. (27) can be written out as follows

=] ~ =} =i
Hhi + Vhi P = Iahl
= . (34)
P
Note that thesc equations are essentially Egs. (1. 64) and (1. 59) of
i Meirovitch (1970), written for System 1 with respect to the moving
! point h;. Similiarly, for the 2n cquations in kq. (28) we have
T 5 A e o =i P
»1_] g oy o 50 o
‘-‘ 3 h.h (— Rl E“IL I"h.
=1 i i 1
n Gt Ps s : ok
Y5, Wi 4T = F

i
The transformed equations of motion, G+X=Kanda-~"+¥ =K,

are not really uscful in themselves, because they allow 6 degrees of
frecdom between all the bodies of the tree configuration. If there are
really 6 degrees of frecdom between all the bodics, then it is much
simpler to use the primitive equations of motion G + X = K or

“+ Y - K. The real utility of the transformed equations is that in
I obtaining them we introduced a number of important vector and dyadic
| variables which can be used as intermediate or auxiliary variables when
the final equations (with less than 6 degrees of freedom between some of
the bodices) arc obtained.

Separation of Free and Constrained Motion

To fac llil ite thv 1mposluon of constraints in reclative motion, we
expand s2i v U, Hi’n’ and Pl into scalar components as follows

Pe B Tl e gL i B
N ‘7} ‘)/1 + .)/1 ')’2 1 yi ; /3
. ] B Y
DRI~ R P R
1 2 vl O3
el 2T ‘ S . (36)
By =B wga ¥y + B ¥y + By oia¥y
by g o T s v
-1 1 A\ 1 2\ 1 N
Pr=fb 8 s B o, « By
i 2 3

> 3 s £i 5 : Ai
I,}ll. and F' are expanded similarly to Hhi and P, respectively. 7g
for s = 1 to 3 are 3 generally non-orthogonal unit vector at h; in Body i,

and A% for s = | to 3 are 3 orthogonal unit vectors at b; in Body i,
)’1 As the l‘(tlpl‘o(‘dl vector to Yy , and hence ‘)’fs e ¥y =1, and
i ,5 YL = 0if r#s. Now 1ntroduce the following column matrices
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S . Al
Vet =»q 61
71 ¥y 1
i Ai i* | =¥ i |
r = 72 ) r == )}2 ) A = 62 (37)
Ai —»] % A1q
)
3 L 3
——i = - _l r'i = i -1
Wi L R o e R L
1R i | s i 5 i I i
Qri= | G4 |, U= 01612 Y By it B, Y| Py = | Pl (38)
Qii Ui Hi i Pi-i
. 73_ L 3 L hi’y:‘ = %3 d
Eqs.(36) now become
GV LTI R TR R e SRR ] 5
== %1 3 = A UA]' ’ th = Hhi,ri*’ = A pAl (3 )
Now making use of
i i, 4 e
BT et o S8 iy s B e B s, (40)
where 13 is the 3x3 identity matrix, we can invert Egs. (39) to yield
CTRET . e A N i __f o= I A
Spi=T @, Uy=na-0, Hhi,r,;,. =0 a Plyss - B (e

i
These equations can be inverted again, to get back to Egs. (39) by making
use of

e Ll gh g B
| s il L S e | (42)
where 1 is the identity dyadic.

i We now suppose that the ''"gimbal axes' or ""Euler angle axes''

¥1 are so arranged that if there is one free rotational degree of
freedom for Body i, this degree of freedom is about i ; if there are
two fre,g.rotatj\qnal degrees of freedom, these degrees of freedom are
about Y1 and 712 . Similarly, we suppose that the ''displacement axes''
bls are so arranged that if there is one free translational degree of
freedom for Body i, this degree of freedom is along 07; if there are
two free translational degrees of freedom, these degrees of ffeedom are

along /6\1 and %% . This orderly separation of free and constrained axes
allows us to write I'' , ¥  and A! as follows:
1’}-‘ SRR g
ri. SR S "l (43)
sl bt

where the subscript f denotes the free axes, and the subscript ¢ denotes
the constrained axes. We can similarly separate the components of
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s e Bl | R
$e ¢ = S ) i R Fie = S Pi: T (44)
I Ql' A 1 Ul‘ hi, Hl A Pl\
L (';J (u (g2 (&
Egs.(36) can now be expressed as (compare with Egs. (39))
e cle SR S
@ -1 W
e T € c
Gl = Al Alv ot
— f f C C _ (45)
f’j 5 Tt 5 ri:::t i
”l A If }lf A HC
s SE B
= gt ety P
t i C C
Inversely (compare with Eqs. (41))
i = et (O B
I © C
oi- i @ ol < sl 6
= . B} . (46)
£l il i _ i >3
T L
i 1 _ o
i - % SO
By = Bgt F s

_I:i.l.l and F' arc cxpanded similarly.

Velocity Transformation

: oL : - ~ 7~ B
We are now in a position to define,the free variables ¢, Gy, K¢
and the constrained variables ", G., K. . We define A and ~ as follows

- NN

1= AT (47)

~ ; A . ;
where A is a rectancular matrix of vectors and — is a column matrix of
scalars. The expanded form of this equation is as follows (compare
with Eqgs. (45))
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oy | i " o N r,l B
Q IR T €2 |
I c i f
" IS "
g | | &
Qn 1—~n i rl\ ‘“n :
Bl gt , s B
u S ! "\(' i U}
| ]
. - . ‘
) '\ nt : ) . nt { [:Jn
LU i L S | (e ! £
— RS A
!
| o
{ C
|
' Qi
o
o
! c
i
Eee
L -~

Note that as indicated with dashed lines in Eq. (48), this can readily be
written in partitioned form as follows

= A N e s N
=E8. 8 Tie =8 = 88 " (49)
AN
’
The inverse of this relationship is
A A PO -—
=B: T 1B, - r”f:’ (50)
i 12|
(8 L (‘_l

where B is a rectangular matrix of vectors. The expanded form of this
equation is as follows (cormpare with Eqs. (46))
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E

n .

L €4 - Sl

\ ey
Evidently, A is a matrix of unit vectors. B can be formed by

taking the transpose of this matrix, and then replacing e/a\cb of the unit
vectgrs by their reciprocal vectors: symbolicallyAAB = A, Note that
b A = lgp, the bnX 6n identity matrix, whereas AB is an identity with
2n I's on the diagonal.

Induced Transformations

A A
We now define G and K so that the kinetic energy T and its time
derivative T maintain the general form

B T R R L R R
Lt SR S o L T
(52)

F ek, 5a BEA L SEA L ZNT
T=R-3= K% = Ki 5+ Kl

N\

This requires that G be defined by
A A _ o A
G=4":&={R |G- Gf] (53)

>>
n
o>
0
| -
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Carrying out the indicated operations yields

— I =
1
Hy H(r
n n
e Hf e H c
(jf = I GC = i (54)
=2 P
f (¢
n n
125 124
s gl
N
Similar equation are obtained for K, with L's and F's replacing H's
and P's. Note that "\, G, and K are column matrices of scalars.
A
It is also necessary to define u by
Rt na-{a] e A A ]
' i it C.
N\
LA
e (55)
At - A Nt =N A ~
. L . A I S o8 o
5 et g B Sl P e
L AL A h o
€ fl C c cf (e
Carrying out the indicated operation yields
= P s == 9
’I\ll Iln /S\ll /S\ln
rs rs rs rs
40l Aah - anl shn |
% P . rs rs rs rs
o3 :\ [l A - o o (56)
rs ¥ S A”t At:llt All Aln
S M
| St ST rs rs
/S\'ir'xt ARR' Onl {yn
sr ST rs rs
- -

where r, s = f, ¢, and where

(A




2 . <3 .t
1) p ] A
Irs i hih s
di pi. 2 T .
rs r c-ijhi S (3%
A SR |
M FI A - M . p
rs r s
. . A AN ) 2\ AN
The relationship G = u has the inverse relationship "= VG,
o !
where Vv is defined by
ey N\ = N as = 7N as
V=B-W BB P (B B
"y c
Bc
E 58)
~ = At At = ’\t A A (
Bv - vV o B . \\4} \,, .L
4 B f B Bc‘{ Ve fe
A = At A = At A A
e . e " ™
Bc Bf Bc bc_j (@ GE
Carrying out the indicated operations yields =
ALl Aln oll Nln
J o) o s &
rs Jrs er ‘rs
231 | Ann ’7\111 . Ann
) a8 g = gt - rs rs ‘rs i rE (59)
B T dEa anl' Al Aln
/‘sr Chw Wrs Wrs
./\lnt ’7\nnt C\\,nl e @nn
sr ST rs ls-J
where r, s = f, ¢, and where
e : o e
A\ % - s
Jl.] I_l JlJ a rJ
rs r S ¢
’7:1_] = 1—-1:,: -}:1_] ol (60)
rs i ° S
o . A AL
sl ol =il J
Wrs - A b s

\\\ Separated Equation of Motion
= 2

"~ The momentum formulation equation of motion is now given by

. AR A
e G+X=K

-
.

A Nt

where X=A"+-X-A G (61)

and the velocity* formulation equation of motion is
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o

ey
(VIS

N A At = - AA 5
4t Y= K where Y=A - (Y+H. AC) (62)
A
It is actually more convenient to determine Y from Eq. (62) with
u expanded. Thus,
N\ At = . PR /.\
Y=2"-{at-[v+pu-(A-F+A-4%)]) (63)
Partitioning Eqs. (61) and (62) into free and constrained parts, yields
A A A A At s At =
G + X =K where = A AT G (64)
r I r i r r
. - A A A A - L., A A
L.50. 40 T + ¥ =R where ¥_=Af - (T +i- A%}  (65)
T e € r r T T
N\ A
where r = f or ¢, and where Xr and Yr are given by *
- = 5 . 7 [ =7
i Pl Bl
r h r h r h
1 1 1
-~ rn_ n n =n
= Vh.] T k Hh 1_‘r Eh
A b A n
3 = = ;¥ = - (66)
T -] 3c 1 =]
- '\r 12 B C
—» =<y
o AN TR AP . &B
r r
5 — L =4
where
=5 | ~ =i
L = L (E_ 2R ¢ * C©) (67)
j i=1 i ij
>, X - >
B =E +1 -& (68)
C ¢, (e
i i i
->. & il
T rk &z.li..k (69)
k €1
2 t k t C k' ok k"
o TRt PR R, TR BN 35 (70)
~ h I c.h () A
k € ik ik
iz
= M a
c.
i

#Note that ;1

A}

N
.= 0; it is retained in X = in Eq. (66) merely to show the
general pattern.
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iy

3o 2 (71)

i€j

Qny
O

ote that M’ times the sum ovgr k for the first term in Eq. (70) yields
Ci of Eq. (31). Also note that a¢j is the part of the translational
gcceleration Ve; which is not linear in ,ka and UJy . Similarly,,.
al is the part of rotational/gcceleration T which is’not linear in Qi*k
and Ujk . Itis clear that X. is conceptually simpler in Y..

Eqs. (64) and (65) each represent two equations: one for the frec
variables (for r = f), and one for the constrained variables. The constrained
variables can be determined algebraically from the free variables, and
therefore in a dynamics simulation we only need to "integrate'' the free
variables cquation. In the momentum formulation, the required differen-
tial equation is

A A A
G, + X; = K; (72)
together with the algebraic equation
AN ~ S A A
By = Mg T P g T (73}

In effect, it is nocessaré to invert ﬁ in order to obtain 2 Ain terms of
the ""known'' quantities ¢ (known from ''integration'') and "7 (prescribed).
In the velocity formulation, the required differential equation is

8. € +%, =K 74
gt e Ce T Ve T By {74}

A
Note that in this formulation we, must also effectively invert b
in addition, we must generate . .

750 N

9

i
. N . . . . .
The constraint force K, is _not required in either formulation.
Should it be desired to generate K., it can be done in the momentum
formulation from

A A A
R, =G, + X, (75)

and in the velocity formulation from

. e
K, =g G 8 EEtany (76)

Note that in a velocity formulation simulation, all the quantities required
to generate the constraint force i\)c are already ''availgble', whereas in
a momentum formulation it is necessary to generate %c' We will give
an alternative expression for K¢ in the mome ntum formulation in the
next section (see Eq. (105)).
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Computational Aspects

In both the momentun and velocity formulation it is necessary to
effectively invert e Of course, actual inversion is not really neces-
sary since it is only necessary to "solve

A A A A A
=G, - W 77
L Bk “fc ¢ i
as
for £ or to ""'solve"
A A A A A A
= T e - 3 78
ST g Kp oty 7, iHE)
/.\ x 1 ¢ tt g s
for . Numecrically, these two "'solving'' processes are identical

and some sort of iteration process can be used which manipulates the

clements of ... However, Russell (1971) has shown that it is more

cfficient to compute only the "diagonal blocks' of W __ and to put the

rest of + times ¢ on the right hand side, without éxplicitly computing
' {, A L = : 5o

the rest ol the clements of iy, This form of "block iteration

discussed by Varga (1962).

is

b . LN X
Another method of avoiding the inverse of Wy is to compute the

e
inverse of /—\u and then use the relationship
A ] A A Nl A
TR = N M v T
ff ff fic ce cf (2%

Ignoring the constraints, there are 6n degrees of freedom in a system of n
rigid bodies. If ny of the degrees of frcedom are free and n. are
constrained (ng + n. = 6n) then the use of Eq. (79) may be L}\esir:lblo if

n. ° ng, or it might be desirable to use Eq. (79) because v may be
sparscr (or otherwise simpler to compute because of less multiplications)

A
than .

Another alternative to analytically generating all the elements of

T is to use the relationship G = £ in the form
A Tt AA A o~ ~
G= A ¢ Lue A5 where & =K« A (80)

The jthcolumn of T is then obtained by letting the jth element of

in Eq. (80) be unity, while the rest of the elements of ~ are zero,
and then computing G in t}‘./:\-nu stages as indicated via parenthesis and
bracket in Eq. (80). The G obtained in this manner is then the jth
column of 2 .. This approach has been used by Russell (1969). The

elements of ¥ can be obtained similarly from the three-stage computa -
tion
A ~ At A4 5 n
= g v- (R G). where B = B-B (81)
2 -1 .
and, of course, B = A So/rpo computation and computer storage space

A / ;
can be saved because | and v are symmetric.
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Strictly speaking, the equations of Russell differ somewhat from
the monmentum formulation equations presented herein, because Russell
uses velocities and momenta relative to the composite center of mass.
Such equations can be obtained by transforming from the aboye trans-
formed velocity ~ to ~° which is the same as ~ except that U' is
replaced by V5 , the velocity of the compofiite center of mass. = i
then replaced by a similar ' ; similarly G'and §'are replaced byé'
and . In fact, Russell (1969) refers to G' and G' as '""primed momen -
tum''. In such a formulation one also obtains a ﬁ', o , etc., but for
computational efficiency, Russell always avoids analytic generation of U'.

Whether a momentum or velocity formulation is used, the
"integration accuracy' must be checked. One time-honored check is
checking the constancy of the inertial components of total angular
momentum during periods of zero external torques, A more comprehen-
sive check would be to compute and integrate T = Q}f'ﬁ\ + ?tc /’J\C and
compare this integrateq value of kinetic energy with the kinetic energy
obtained from T = 3 (%It— oy + GtC AC)A Note that ﬁc makes a contribution
to T if "¢ is not zero; similarly, GC contributes to T.

Coupling of Free and Constrained Motion

As an alternative to transforming to free and constrained variables,
we can leave the equations of motion and equations of constraints in a
coupled form, and then solve the equations of motion and equations of

constraints simultaneously. Recall we started out with G + X = K or
u- = +Y = K and then made the transformation
NN N 7\
<= A G where A=A A (82)
This can be written as
AN N - A AN A AA
g = 4 /4 i = 3 4 =
i et Pt ok B A G
~
&
N\ A -
where "45: A - AS for s = f and ¢. Inversely, we have
/-\ = R 2 - nf . N = /\f (84)
7% Ay
pc" o
A A ~ A )
where B =B -+ B and Rs =B * Bfor s =fand c. Since we consider
i to be prescribed, we effec?lvely have the equation of constraint
2N A
B " s h (85)
C ¢

and thus there are n_. scalar

There are n. scalar elements in " .

equations of constraints.
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AN
From the equation 0 = A ¢ we get the equation
N A
B=ks Ra{ -0 =i &, (86)
AL N
A Kc
Inversely, we have )
At A A\ N AL A 2\
k=B'K = |& &||K |- BK, + B K (87)
f c Af T e Tic
K
c
Thus, we can write
K=K* + K (88)
where
At N Pl
K2 = £ K, . k¢ =% (89)
f f e c
K% is the "applied' part of K, and K is the ""constraint" part of K.

If the multi-body configuration is not g tree, it is not a simple
matter to find the transformation operator A and the appropriate
velocity ™ with free elements /‘\f and constrained elements "7 .
However, it is usually simple to obtain an expression of the form

G v = T (90)

for the constraints of the multi-body configuration. Here B. is some
(primitive) velocity constraint transformation operator, and 5. is some
rcscribe%constraint velocity. In a tree configuration, we simply take

B to be c and we take °_ to be AC . From the general properties
of Lagrange multipliers, it now follows that we can write
K = K*+ K where K° = .'étc K_ (91)

where KC is the Lagrange multiplier column matrix (usually igenoted
by ). In the case of a tree configuration we take K to be Thus,
the momentum formulation equations take the form

G+X:Ka+§f_§c (92)
and the velocity formulation equations take the form
s - K@ =t %
W Y K™ + hc Kc (93)

In either formulation we also need the constraint relationship in
Eq. (90). We will now examine what is required to determine Rc in
either formulation.
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Velocity Formulation

In the velocity formulation, the simultaneous equations which
must be solved are

¥ Sl . N = ~
o F,‘i ‘ = ‘ (Ka -Y
. : = =il e 2 (94)
R @) - K =R
C (& i { & (&
where the second row of this matrix equation was obtained by taking
the time derivative of Eq. (90). Inverting this relationship yields
! : l r
!
i a 1 PKT - Y i
Sl o D e : (95)
- K e d =] ~
(& | C e
where
d=-(B - v. B
C C
pt D
el 5 ‘,(‘ d RC
(96)
b=~V ﬁ,t d
L
c = ~d f;, v
o
Hence
~ A g 5
= = s = N = 3 L) o)
K mwd i@ X jad (P =@, - ) (97)
The differential cquation of motion is now
. a f & <~
T= e (K -Y)fb('c—pc-') (98)
: . A ~
Note that for a tree configuration we may take + to be B, and |
3 5 Ko ’ o - . C
then d is equal to -V The evaluation of “7_ can of course be replaced

cey
| by an evaluation of 3{-{1 according to the relationship

| ~N-1 A A A=l A &
“ e e T By Y P (99)

Momentum Formulation

In the momentum formulation, the simultaneous equations which
must be solved are

1 B & ’ IK* -~ X
~ w0} | & < o (100)
R(‘. L -Kc I ' & Rc. E Rc' el

- 4
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where the second row of this matrix equation was obtained by setting
g=v- G in Eq. (90) and then taking the time derivative. Inverting
this relationship yields

: i 1y
G ta b K* - X
o ) 3 0 5 ~ . (101)
-K e d I o= € v T VG
C ; C C (&
where
d=-(B -v-8Y'l=d
a=1+% 5r d R Vo= M+ oa
( ¢
o (102)
B =S=pe g =D
(e
€ = -~ (_i ﬁ V=
-
Hence
B e e e A i
K C (K X) - d( o B, B. v G) (103)
The equation for G in Eq. (101) is actually less convenient, though
cquivalent, than the original cquation G=Ka-X+ Q K The
equivalence of K in Eqs. (97) and (103) follows from
Y= h b 52X - Y G (104)

Thus, whether a velocity or a momentum formulation is used, essentially
the same equations are involved in determining the constraint force (or
Lagrange multiplier) K

Recall that when we discussed solving for K in the previous
section, we found that Eq. (75),for the momentum ?ormulation was
not really convenient because G is not available. We now see that we
can use

A fou) At A ALl LA A
e R R, (Rf L TR ( e )
, (105)
Al A . 3t i L SN
® 7 Yee Be (B K - XD+ Voo (B¢ - B B ¥ &

Note that either forms of Eq. (105) could be used with either the
velocity or the momentum formulation.

Comparison With The Literature

Table I lists some of the better known references on multi-body
spacecraft dynamics and briefly comments on them in the light of the
above discussion.
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The cquations of Hooker and Margulies (1965) and of Roberson
and Wittenburg (1906) can be obtained in two stages as follows: First,
Is expressed in terms of  which consists of the inertial angular
velocities of cach body plus the inertial translational velocity of the

composite center of mass; the equation of motion then is

. 4 Y = K where = A Sl At 'AI’ and K = A" K; the
clements of u can be \'\prg bld in terms of ‘“baryc (ntorb and
‘augmented bodies'. Second, the transformed equation of motion is
coupled with the relative rotation constraint equation, By- '= 0, and
the constraint torques arce obtained via Lagrange multiplicrs.

To relate the reference matrix ¢ to the '"incidence'' matrix S of
Roberson and Wittenburg, let +y be the first row of o, and let 09 be the
remaining n-1 rows. Then o, = St, and cach column of S {or row of
2 ) contains all zero clements except for one +1 and one -1. Similarly,
the path matrix can be related to the "ordering' matrix T of
Roberson and Wittenburg (sometimes denoted by S%).  Let 7 be the
first column of m, and let "o be the remaining n-1 columns. Then
2 Tt , and the first column of T (or row of ") contains all zero
e¢lements. Since and 7 are inverses of ecach other ( n@= 1,, the
nxn identity matrix), it follows that m = s Laes s :2 is a left

inverse of T, consequently, St T!= 1,5, %r TS = 1,_j.
The approach of Velian (1967) is similar to that of Hooker-
Margulics and Roberson-Wittenburg, cxcept that inertial angular
velocities are replaced by relative angular velocities (and relative
lincar velocities in case of point massces). The cquatior  of motion,
b( 191 ¢ impogition of the relative rotational constraint, has the form

+ Y = K, where :, Y , and K are column matrices of scalars,
and T is a (positive definite symmetric) matrix of sgalars. Next,
A and its inverse B arc introduced as follows: “= A and_ =B~
Partitioning A and B (similarly to the partitioning of A and } in
Eqgs., (49) and (su))ymlds T= By G+ A, and 5 - B(F, 0z B0

K= At K _and K = BIP\ are Sllﬂl':ll].%/ partitioned ag K AR
T = KE_ K, and K = B} K + Ht + K€, where P\“ ib the "applicd"
part of Kand K¢ is the "¢ onstraint' part. From AB = 1 there follows the
relationship "Tip + T ¢ - I, where lis a 6n ~ 6n scalar identity matrix,

and where Tif = A¢Be , T, ~AA B.. From BA=1 there follows the

relationshipa Bl = Iy, Bl = 1., Bihc = Oy, and Bohp = O g ;
here, and 1 are scalar identity matrices, and Orc and O. farv
matrlu s of zeros (which are transposcs of cach other). ~.f and Ti. are
6n « 6n matrices of scalars which are 1(h ‘mpotent: ‘rf He = W and

i 7.(. = MC ; hence, these matrices are [)I‘O_](’Cl()lz' (or ""projection
opv ators") In the case of Velman (1967), A and B are permutation
matrices and therefore B = At; conscquently, B; = A} and B, = At

and it follows that 'y and . are symmetric. _In terms of these pro-
jectors, the (quatlon AtRc = 0 becomes it KRS = 0 upon_left multi -
plying by B! , and the equation ‘P’(, =B % becomes 1 o KC'"(, upon

= {3 N .
left multiplication by A_.. Now that Velman's symmetric projectors
have been introduced in terms of the transformation operator formalisn,
the rest of Velman's procedure can be scen from the discussion by

Likins (1970).
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The computational aspects of the Hooker-Margulies and Roberson-
Wittenburg formalisms are treated in Fleischer (1971) and Farrell et al.
(1968), respectively. Fleischer also discusses Velman's procedure
for c¢liminating the constraints.

The equations of Palmer (1967) were the first general set of

equations where the constraint torques are decoupled by transformation,

rather than solved via Lagrange multipliers. However, Palmer's
equations are restricted to configurations which are "clusters’ "in the
sense that all of the bodies, other than Body |, are attached to Body 1.
It is interestine to note that Palmer (1967) discusses velocity, accelera-
tion, and torque transformations, but he does not make extensive use

of these transformations.

Russcll (1969) was the first to develop a set of transformed
equations for an arbitrary trec configuration. Russell chose a momen-
tum formnulation where the dynamics state variables are the free compo-
nents of the transformed momentum; however, the constrained compo-
nents of momentum and the primitive and transformed velocities are
retained as intermediate’ or "auxiliary'' variables so that the final
c¢quations have a particularly simple form.

Farrenkopf (1969) introduced an "inductive' method of "digitally
synthesizing'' the dynamics equations via a ''combining algorithm'. The
original formulation was restricted to tree configurations, but it was
extended to terminal flexible bodies by Ness (1971). Their equations are
essentially the "transformed' equations of this paper if left-multiplied
by a non-singular matrix; this left-multiplication is neccssary to make
the Farrenkopf "mass matrix' symmgtrig , as it is in this paper. Thus,

if Farrenkopf's gquauon of motion is m ~ +_§ = k, then left-multiplying
by &' yields @ *+ ¥ = Kwhere 3= al m, Y= ? ¥, and K = &tk,
If ? is the inverse of &, thenk = 3t K ; thus, ftec can be identified as

the matrix which tr(msformb the tranb[ormed force K of this paper to
the force k of Farre nkopf; the matrix ! which symmetrizes m by
left-multiplication is then the inverse of this Bt,

The Hooker-Margulies formalism was converted to an approach
whichuses relative gimbal angle rates in Hooker (1970). The resulting
equation of motion is 4' '+ ¥' = K', where K' is the ""primed force
introduced earlier in (onnecuon with Russell's ""primed momentum'"'
approach. It is interesting to note that in the Hooker (1970) formalism,

Russell's )rlmod momentum is simply G' = &' ', the kinetic ener

pri t ply gy
= T= G = = ~'U0' %t | and the time derivative of kinetic energy
is =Rt

Likins (1973) extended the Hooker (1970) equations by allowing
the terminal bodies to be flexible, and by allowing each rigid body
to contain axisymmetric rotors.

The Roberson-Wittenburg formalism was converted to an approach
which uses relative gimbal angle rates in Roberson (1972) and Wittenburg
(1973). Both of these extensions allow relative translation between
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bodics; the extension by Roberson also allows the bodies to be deform-
able, but the equations of motion for thedeformation coordinates are
not presented. Boland, Samin, and Willems (1974, 1975) have also
obtained Roberson-Wittenburyg type equations in relative gimbal angle
rates and relative translational rates, and have described the use of this
formalism in configurations with closed loops (by cutting as many loops
as required to form a treec, and then introducing constraints via
Lagrange multipliers).

The Hooker (1970) equations have been converted to a set of
equations not using '"barycenters' and ""augmented bodies' by Frisch
(1974, 1975), Ho (1974, 1977), and Hooker (1975). In this latest version
the dynamics state variables are the relative gimbal angle rates between
bodies plus the inertial linear velocity of a material point of Body 1. The
resulting equation is the equation 35+ Y = K of this paper (except that
these papers by Frisch, Ho, and Hooker do not allow relative transla-
tion between bodies--however, the terminal bodies are allowed to be
flexible; Frisch (1975) treats all bodies as flexible).

The approach of Ho (1974, 1977) and Hooker (1975) has been
extended to a chain of flexible bodies in Ho, Hooker, Margulies, and
Winarske (1974). The most interesting feature in this extension is the
use of quasi-static modes plus vibration modes to describe the deforma-
tion of the flexible bodies; the use of these modes allows decoupling of
the constraint forces and torques.

The formulation of Bodley, Devers, and Park (1975) is the most
general of those in Table I. It allows all bodies to be flexible, it allows
up to six degrees of freedom between bodies and any of these degrees
of frecedom may be prescribed function of time, and it allows closed
loops. The dynamics equations are retained in ''primitive" or 'free
body'" form, and the constraint forces and torques are obtained via
Lagrange multipliers. It is interesting to note that Bodley et al. (1975)
make fairly explicit use of velocity transformations.

Of all the authors in Table I, only Russell uses a momentum
formulation. The transformation operator formalism was initially
developed in terms of a momentum formulation (Jerkovsky, 1976), and
the extension to a velocity formulation was made in order to provide
an overview of the alternatives in Table I. As a matter of record, it
can be noted that the use of a momentum formulation is also advocated
by Bodley and Park (1972), and by Williams (1976).

Conclusion
An overview of the structure of several multi-body dynamics
formulations has been presented in the language of the transformation

operator formalism. The following alternatives have been discussed.

1. Momentum or velocity formulation
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2. Separating the cquations of motion from the equations of con-
straints, or coupling these equations

3. Computing the entire mass matrix, or computing only its
block diaconal clements

4. Computing the mass matrix analytically or numerically
5. Inverting iy or -.. (both arc positive definite symmetric)

It has been noted that the same type of lincar simultancous

cquations must be solved in the momentum formulation and in the
velocity formulation.  The same mass matrix and the same force
appear in cither formulation. In fact, the same mass matrix and force
arce obtained in the' matrix method' of structural analysis if the trans-
formation matrix is continuously updated to reflect the instantaneous
values of the coordinates. However, the matrix_method of structural
analysis docs not gencrate the extra term X or Y becausce the time
derivative of the transformation matrix is neglected.

(8]
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